# Carbon Climate Feedbacks Analysis w the NCAR C-CCSM1

Inez Fung (UC Berkeley)

Scott Doney (WHOI)
Keith Lindsay (NCAR)
Jasmin John (UC Berkeley)

Thanks to NSF, NASA, NCAR, DOE-SciDAC, NERSC for support, CCSM, computer time

# Contemporary Atmospheric CO<sub>2</sub> Budget



Land & ocean sinks ~ 50% of FF emission sensitive to climate perturbations
Will the warming increase or decrease the capacity of the land and ocean to store carbon?

2

# **Terrestrial Carbon Cycle**

- Growth, mortality, decay
- Population: {ages}
- Photosynthesis (climate, CO<sub>2</sub>, soil H<sub>2</sub>O, resource limitation)
- Decay (T, soil H<sub>2</sub>O,..)



# **How would CO<sub>2</sub> and climate co-vary?**

### Suppose there is warming...

# Atm CO<sub>2</sub> would increase because:

- Warming may enhance decomposition
- Increased ocean stratification → more carbon in mixed layer → reduced air-to-sea flux
- ....

# Atm CO<sub>2</sub> would decrease because:

- warming may enhance photosynthesis
- Enhanced marine productivity and export

# Modeler's (Simplistic) View of the Global C Cycle





**Based on coupling of CASA BGC & LSM Land Biogeophysics** 

- GPP/NPP from AGCM
- dynamic allocation
- -prognostic Leaf Area Index (LAI) and phenolgy

#### **Iron-Carbon Biogeochemistry Model (OCMIP')**

#### **OCMIP**

- -carbonate thermodynamics & air-sea fluxes
- -diagnostic biotic model Enhancements
- -replace PO<sub>4</sub> restoring w/
   prognostic export flux
   -incorporate Fe limitation
   and Fe cycling



- -Production f(temp, light, PO<sub>4</sub>, Fe)
- -Fixed Redfield Ratios linking C,P, O<sub>2</sub>
- -Martin et al. Particle Remineralization Curve
- -Semi-labile DOM only

#### **Multi-Century Coupled Carbon/Climate Simulations**



- "Stable" carbon cycle and climate over 1000y
- Net Land+ocean inventory: ±2 PgC
- Natural climate modes (detection/attribution)
- Baseline for climate projections/fossil fuel perturbations

## **Idealized Expts: Fixed land cover**

#### Given: historical FF + SRES A2 emission

- Rad\_on, CO<sub>2</sub>Fert\_on
  - Coupling between climate and C cycle
  - Ocn senses incr CO<sub>2</sub> in atm and changing circulation
- Rad\_off, CO<sub>2</sub>Fert\_on
  - Climate "sees" 283 ppmv in atm
  - C cycle "sees" control climate & circulation
- Rad\_on, CO<sub>2</sub>Fert\_off
- Rad\_off, CO<sub>2</sub>Fert\_off

#### **Atm CO<sub>2</sub> Budgets: Historical + SRES A2 FF Emission**



# WCRP-IGBP Coupled Carbon Cycle Climate (C4MIP): FF=SRES A2, BYOM



#### **Cumulative land sinks**





Warming > Precip incr → Drying → Slows C Sink

# Correlation: $\{\Delta T, \Delta \text{ soil moisture index}\}\$ CCSM1-Carbon Control Simulation





Positive correlation → warmer-wetter; or cooler-drier



Negative correlation → warmer-drier; or cooler-wetter

### **Observed Co-Variations of \Delta T and \Delta Precip**



# **Changes in Veg and Soil Carbon:**

### w minus w/o climate feedback





## **△ Biomass**

Biomass(2080-2100) minus Biomass(2000-2020)

 $CO_2$ Fert on, Rad\_off:  $\Delta B$  incr almost everywhere



C4.24b C4.25b totbiomass: L20-F20 (kg/m2)

Rad\_on minus Rad\_off

(△B +ve for both cases)

- <u>Tropics</u>: less ∆B w climate fdbk
- •<u>Hi Lat</u>: more ∆B w climate fdbk
- Global: less ∆B w climate fdbk

### **Summary:** Positive but weak climate feedbacks

- Physical climate model NCAR-CCSM1 has low climate sensitivity d(Climate)/d(CO<sub>2</sub>)
- Locally:
  - Competing effects bet' T and moisture on biology
  - Short turnover time (10°-10¹ yr) of vegetation carbon
     → tight NPP/resp. coupling through biomass (# of pools/effective turnover time)
- Regionally: Enhanced C source somewhere, and enhanced C sink somewhere else
- Increased stratification in ocean → reduce air-to-sea flux
- Decrease upwelling → reduced marine productivity
- Land and ocean uptake coupled:
  - If land uptake  $\downarrow$   $\rightarrow$  atm  $CO_2 \uparrow$   $\rightarrow$  ocean uptake  $\uparrow$

# **Challenge and Opportunity:**

- Need observations/theory about behavior of biosphere in new climate space
- Terrestrial and marine ecosystem response to changing resource limitation (macro and micro-nutrient)
- Degree of CO<sub>2</sub> fertilization? Saturation?